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1. INTRODUCTION

Much time and effort have been expended in attempting to approximate the Fourier transform of
functions. The Fourier transform, h, of a function g is given by

p 2 ri ft
h(0i g(t)e dt,p=i. (1)

In addition, for reasonable functions, the inverse to this transform is given by

(~p21rift
g(t) h(,e df. (2)

g~t) 4

For this report, let g be real and continuous and vanish outside the interval [0,T]. In this case, h(f) is
continuous, and g is the inverse transform of h. The definition of the Fourier transform may easily be ex-
tended to distributions of which the Dirac 6 function is an example.

This report discusses four different transforms that under certain conditions may be considered ap-
proximations to the Fourier transform. The Discrete Fourier Transform (DFT) and the Fast Fourier
Transform (FFT) are well known and represent the transform of impulses; the other two are the transforms
of piece-wise linear functions and are implemented by the subprograms FLAT and NUFT.

The DFT replaces the original function, g, with N impulses (point masses at N equispaced points in
[0, T] weighted by the value of g at these points), The Fourier transform of the sum of these impulses is
then computed. Thus, the DFT has a value at each frequency point. The FFT produces a sampling of the
DFT at N ,quispaced frequency points. The FFT makes use of the Cooley.Tukey algorithm to calculate
these values rapidly and efficiently.

Subroutine NUFT is an algorithm that calculates the Fourier transform of virtually any piece-wise
linear function. If the endpoints of these linear segments are equispaced, N (the number of points) is a
power of 2, and the function vanishes outside the interval, subroutine FLAT may be used to sample NUFT
at N equispaced frequency points. Subroutine FLAT makes use of the Cooley-Tukey algorithm to produce
these results in about the same computer time as an FFT.

Ii:
Since each of these transforms is the Fourier transform of an approximation to the original function,

the degree to which each agrees with the Fourier transform is largely determined by the goodness of fit to
thie original functions.

Since it is of great interest to apply these transforms to the analysis of rapidly varying transient
signals, this report discusses also the routines used to process these signals at the Harry l)iamond labhora.
tories (IIDL). Also discussed is Mimipulse -a function used to simulate the response of systems to electro-
magnetic pulse (EIMP).l-as well as the calculation of its transform. Mimipulse was often employed as a means
of testing the validity of the various processes.

The programs are listed In appendix A.

7
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2. THE DISCRETE FOURIER TRANSFORM

Let At > 0 and N be a positive integ,'; then the DFT of g of order N and increment At is given by

N-1

N- p p2 lrfAth(f)- gojAt)ep2ft p = +1 (3)
j=0

This transform is of interest because it and its inverse are relatively easy to compute.

Insight into the DFT may be gained by observing that if we define

g, (t) = goat)/6(t - jAt) (4)

wher.- = Dirac delta function. That is, g is a sum of impulses at tile points j At and the DFTofg

is identical to the Fourier transform of g&. Also, the DFT defines a mapping frotih functions defined on a

discrete set,
1: N-1

"{At ,

to functions defined for all f, - < f < . for if two fupetions agree on this discrete set, their DFT's agree
everywhere.

3. THE FAST FOURIER TRANSFORM

The FFT for certain N is an extremely fast method of sampling the IFT. Tlhe heart of the FFT is tile
Cooley-Tukey algorithm, which is a very efficient means of somming the series

N-.I
p - p2irjk/Np,?. aje•fl ~N(5)

for integer k, when N is a composite nmnber. The ('oley.lTkey algorithin has highest elficie!'cy when
N = 2m. In that case, the ratio of comrputer time Sisent sunlummg by use of this algorllhim, as opposed to
more "oviv;iumtnal means, is appro)xihately rn/N. The Cooloy.Tukey algorithin is applied to the 1)I1' by the
observation that equation (3) reduces to

h(kAI) N, . t) (0)
JO

it is replaced by kAf, where Af- I/(NAt)

F8



The output from the FFT is an ordered array of N complex numbers. The first (N/2 + 1) numbers of
the array represent the values at frequencies in [0, (N/2)Af] inclusive while the rest of' the array represents
the values at frequencies in [(-N/2 + 1 )Af, -Afi inclusive. Thus, in this array, the negative frequency values
follow the positive ones, and the highest frequency represented is (N/2)Af. For di real function g, thle value
at a negative frequency is the comrplex conjugate of the value at the corresponding positive frequency.

3.1 Aliasing-Theurem I (Couleyý

The key to understanding aliasing is a remarkable theorem of Cuoley's.1 Let Af 1/(NAt)
1/T, F N4f. Define

I1( +0~ hf nll-) < f F/11(8

Theorem I (Cooley).-If Ii is the Fourier transform of g. then h P is thle FF1' ofi P. (Where tlm.
appropriate s~ampling is made).

Definition. -Aliasing is that error introdaced into tht! FFT by thle contribution ol trequencies
higher than those considered. Observe that

a. If g(t) 0 for t > 1' and I< 0, then g(t) gl~t). rh'lls! thle l'ofgagrees .vith h~ %amplled

III thlis case~, tile 111' evaluated at 111,11 diffcs Ire'fl thle I'mitier trlsi'mtofII., evallualed at mI.1 by

11. 1I I l1t) 0 for 1`12, thenl hp , kAl') igmes with hi0.1') lot N12 + I k N, 2 In

this %case, thle inverse FF1 samlpled at nIAt. 1) - m 'II N differs I'roil g(111.11) by

gI 1 I kTI*~)

(wcJ.'~J 1-S5. 0irA.W eiadVAWlh h eiePwr viom AEMs J lchc _1

[JU~ 190). 7-83



c. If both the conditions for "a" and "b" are met, then the FFT agrees with the Fourier
transform at the specified points. Unfortunately, the only allowable function satisfying these criteria is
ga 0 (since a nonzero continuous function cannot be both band limited and time limited).

3.2 Applications of Theorem I

3.2.1 Choice of N and At for Reasonable Approximations

Given g, choose S large enough so that g(t) is negligible for t > S, and choose N large
enough so that h(f) is negligible for Cfl > F/2 where F = N/S. Then let At = S/(N - 1) . In this case, the
FFT is a reasonable approximation to the Fourier transform sampled at these points.

3.2.2 Inverse Transforms

If one is given equispaced samples of the Fourier transform and wishes to use the FFT to
evaluate the time-domain function, one should try to duplicate h as closely as possible by single or double
aliasing.

Single Aliasing.-If equispaced samples are available merely in the range [0, F/2], construct

an equispaced array whose second half is the conjugate of the reflection about F/2.

In FORTRAN notation, single aliasing is performed by

NI = N/2+1
N2 = N 1-2
F(N I) = 2*REAL(F(N I))
DO I I = 1, N2

1 F(NI + 1) = CONJG(F(N1-1))

Double Aliasing.-if equispaced samples are available in the frequency range [0, F], replace
the second half of the array with the sum of the original value and the conjugate of the reflection about
F/2. The first half of the array is then replaced by the reflection of the new second half. Double aliasing
may be achieved in FORTRAN by

D02 I=I,N2
F(NI + 1) = F(NI •- )+ CONJG(F(NI-I))

2 F(N I-I) = CONJG(F(N1 + I)).

For both single and double aliasing, sufficient information is often not available to com-
pletely determine the best 0-frequency value to use. In the inverse transform, this can lead to either drift of
the time-domain function or errors for small values of t. Thus, often the analyst anchors the transform by
subtracting from the points of the time array the value at 0 time. Doing so, however, may introduce a
relative displacement of the resulting time function, often noticeable at late times.

4. SUBROUTINE FLAT

In light of the inherent deficiencies of the FFT pointed out by theorem I and the nature of the digiti-
zation process employed by IIDL. an alternate fast approximation to the Fourier transform was desired.



This transform was named "FLAT". It approximates the given function, g, by a piece-wise linear function,
92- and then uses the Cooley-Tukey algorithm to obtain a sampling of the Fourier transform of g, at the
same frequency points as does the FFT.* Approximation of continuous functions by line segments is in-
herently better for integration than approximation by impulses as employed by the FFT. Computer running
times for FLAT are within 25, percent of those for the FFT (approx 200 ms for a 2048-point complex
array on a Control Data Corporation (CDC) 6600 computer).

4.1 Derivation of FLAT

Consider a function g(t) defined on the interval [0, (N - l)Atl with g(0) = 0 extend g to the
point (NAt, 0) linearly. Let g2(t) be the piece-wise linear function joining (jAt, gOAt)) to ((0 + l)At,

N-1

g2(t) = i g2J(t),

where

g2j(t) cjt + dj

tefjAt, + l)At).

go + ')t:- goAt)

Then the Fourier transform, G2, of 92 is giver (for f :* 0) by

NAt

Then ~~~( th ore rnfrGo 2 isger, ft (fo f4 (p1rft by

G2(f) 4 g9 W 2(t)ep2it)d=dt

N-1 (j+1)At
7-E gi-tWep2f) dt

j=O fjAt

N cI C[e (P27'ifOjl)t -e(2rifjAt)

I=0 (2p.if)2

(2....iL.2 ~j= sje(P2'iTfAt)'

(27rif) 2  J=

P The Cooley-Tukey algorithm used Is another one of the brilliant creationts of W. 7, Wyatt of ItDL, written In COM-
JPA4SS.

I1
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This transform was namned "FLAT". It approximates the given function, g, by a piece-wise linear function,
gand then uses the Cooley-Tukey algorithm to obtain a sampling of the Fourier transform of g, at the

same frequency points as does the FFT.* Approximation of continuous functions by line segments is in-
herently better for integration than approximation by impulses as employed by the FF17. Computer running
times for FLAT are within 25 percent of those for the FF17 (app ox 200 mns for a 2048-point complex
array on a Con rol Data Corporation (CDC) 6600 computer).

4.1 Derivation of FLAT

Consider a function g(t) defined on the inter-val [0, (N - l)AtI with g(0) 0- extend g to the
point (Nat, 0) linearly. Let g2 (t) be the piece-wise linear function joining (jat, goa1t)) to 0 + oat,
g [(j+)AtI) ,j 0,N - 1:

N-1

g2(t) Li z~ )'

where

g1 o + ')At:- goAt)

Then the Fourier transform, Gofg is given (for f* 0) by

G i(I~1  d gjtt)~(P2 5 t) dt

N 1 1 ) ePA ft't
(27ri02 ift)

lh ooe~ke l~olhi se.sante ono thebrlin cretioso .T yt fHL rte CM
PASS.

j=O fiat 11

N- -. IA *A*' (pA-SIA) pirf



where

SN =CN-1

Now let Af l/(N~t):
N LR2"j k"

G2(kaI>(ii) )~ sje\ N' /k
(nkf-j=O

3:1 N-i (p 2 ITij k

(21rikAf) 2 yO N,

where

t0  NO-C1 ,

forj > 0.

Next, obse.-ve that N-1 t~(Ep lijk)

j=0

may be evaluated by use of the Colley-Tukey algorithm.

It is of interest to observe that i.f 1g Wt 9 2 Wt <, 0 < t <T , then

T TT~t
( g(t)e(" 2 '" dt g- te(piit dt IT g(t dt < eT

independcrnt of f. This implies that, if g(t) is continuous and vanishes for t > T, the Fourier transform of g2
c onverges uniformly to the Fourier transform of g as At -~0. Hence, the values of FLAT converge to the
values of the Fourner transform at the sampled points.

An inverse to FLAT, called "FLIT," also uses the Cooley-Tukey algorithm. Subroutine FLIT produces
an equispaced time array,

jglkAtIN IJ0

with g(0) 0, such that FLAT of the (linearly interpolated) array is the given equispaced frequency array.

12



S1

Indeterminacy of the 0-frequency value may result in a tilt of the time-domain curve or oscillations

Subroutines FLAT and FLIT are resident in the user library ANAPAC on the CDC 6600 computer at

The calling sequence for FLAT is:

Call FLAT (ARRAY, N, DT, I),

7 [• where

ARRAY name of complex array containing data,
N number 'f points in array (N must be a power of 2),
"DT = At,
SI = value of p desired in transform.

The calling sequence for FLIT is 
I/

*- Call FLIT(ARRAY, N, DF, I),

*. where

ARRAY = name of complex array cotitaining data (only the first N/2 + 1 points
need be specified); the desired output is the rel part of ARRAY,

SN = number of points in array (N must be a power of 21,
DF = Af, I
I = value of p desired in inverse transform. I

The desired output is the real part of ARRAY.

fi 5. SUBROUTINES NUFT AND INUFT I

Subroutines NUFT and INUFT are used to compute direct and inverse Fourir transforms.

The arguments in the CALL NUFT card are

(I) Real array: independent input variable (time)
(2) Real array: dependent input variable (amplitude)S(3) Integer: number of points in input arrays

(4) Integer: number of points in output arrays

(5) Real array: independent output variable (frequency)

k, (6) Integer: indication of whether the array in No. 5 is giv n as frequency or circular fre-
quency and whether it remains that way or changes (see comments for IOM

(7) Complex array: dependent output variable (Fourier tran form)

te i (8) Real array: storage for intermediate results to save co aputation time, dimensioned as!II' the input arrays

V '" (9) Integer: sign of the exponential (+1 or -I).

* 13
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Terms with small absolute value in the exponential are computed by use of a power series expansion,
to avoid loss of accuracy due to subtraction of almost equal numbers.

i'1

The Fourier transform is computed assuming that the time-amplitude trace is formed of straight line
segments.

It is possible to use NUFT to perform an inverse Fourier transform by applying it separately to the
real and imaginary parts of the given transform. This operation takes approximately twice as long as thc di-
rect Fourier transform. In iNUFT, those operations are performed only once, just as in NUFT. The call is
quite similar to that of NUFT, but arrays No. 1 and 2 are for the output, arrays No. 5 and 7 are for the in-
put, and the scratch array No. 8 has to be complex and of dimension given by the integer in argument
No. 4. The values of the Fourier transform are given only for nonnegative frequencies, and the output func-
tion is assumed to be real.

These transforms have to be used when it is not convenient to have equispaced input and output
points in equal numbers, usually a power of 2. It is often important to use frequency points with intervals
that increase with increasing frequency, to sample closely the low-frequency values, and to go to very high
frequencies at least with a few points. The results of inverse Fourier transforms are improved by this
procedure.

6. SUBROUTINES LINT AND CLINT

Subrutines LINT and CLINT are used to interpolate linearly between points in a given array. The
arguments in LINT are

(1) Real array: independent input variable
(2) Real array: dependent input variable
(3) Integer: number of points in input arrays
(4) Integer: number of points in output array
(5) Real: increment for independent output variable
(6) Real array: dependent output variable.

The independent output variable starts with the first value of the input array. If any points fall out-
side the range of the input variable, a value of 0 is given to the output.

Subroutine CLINT differs from LINT oaly in the sixth argument, which is a complex array.

14



7. MIMIPULSE*

*A model that has been used to represent analytically the response to an electromagnetic pulse is aA
function that vanishes for t < 0 and is defined byA

At/T 1  0 <t <T1

vlFl

[T(Tt2 -T)

k a + 3t-tM 2 + Yt3 , T2 <t <T3

a exp[- 2 (t -TA) cos [w1 (t - T)]'

+ (at 2 /co2 ) exp HP3 ( - TA) sin [w2 (t - T3 )] T3 < t < T

0, t > T

The values of A, T1, T2, T, and a are given. In addition, a time, T, is given to define the end of
the "recorded" part of the pulse. The values of t,, and ar ie hog osat 1 Sand Sby

13r ie houhcntnsS S2(T -S3

011

t2 Si 2 (T E - T 3 )'

IrS4
TE 3

Finally, a, 63 l, and 'y are determined by matching the values and the derivatives of the function at the ends
of teinterval.

*A cvnicept origbially developed by Carl Konschnik formterly of HDL.

15



The Fourier transform of this function is the sum of the Fourier transforms of the components in the

different intervals:

A[exp(-iwT,)(iwT1 + 1

F A exp(-iw4 T1 ) I

2(a 2+ +6yT3 67Tly2+yT

X exp-kT3  + 3w ( -j) 'ep(iT) + + 3 i ~

i~) 2 ~ J2 -T, w

ao 2os + T3 )T +i s2n [_IT 2-+6yT
R.2 Fx[~~ +w x iw)Tr + 3

3 3) 3  4- T2 2 ( 3  3 ,42)ald A~i r0 eedn nwhhe one awue httetaevn~is fe rI ie~b h

presion n th las intrval

F a exý-iw l3



Functions F1 and F3 have to be computed separately for wo =0. They become

F1(O) = AT1 '

T' 2 + 3 + 4

where

a-T 2 0I-T'6 -T 3
2 2-

0 -)T -3T 3 7.

Three characteristics of the function follow: (1) It is continuous at the extremes of the intervals, but
it does not necessarily vanish at TE. (2) The derivative is discontinuous at T1 , but continues at T2 , where
the function vanishes, and at T3 , where the function reaches a minimum given by a. (3) At T4 , the first
term in the corresponding expression for f(t) vanishes.

Subroutines ANMI and ANTRA compute the values of f(t) and its Fourier transform. Two real arrays
are passed to ANMI, one for the input (times) and one for the output (amplitudes), plus an integer that

* gives the number of points. Also, the subroutine reads a NAMELIST card PULSE that contains the values
A, AA, TI, T2, T3, T4, TE, SI, S2, S3, and S4; the meanings are obvious, with the possible exception of
AA = a. A real array for the input (circular frequencies) and a complex array for the output (values of the
Fourier transform) are passed to ANTRA, with an integer for thle number of points. This subroutine also
reads a NAMELIST card with the name PULSE. It contains the same information as that for ANMI, plus a

*. real variable FINIT that takes the value 0. for an infinite trace and 1. for a finite one.

8. SMOOTHING

The power spectrum obtained from a digitized time-amplitude trace shows a strong oscillating noise
component, especially on a logarithmic scale. Subroutine SMUZ can be used to present the output in a
more intelligible form. The input is an array of a function given at consta, ! intervals. When two maxima or
two minina occur closer than a prescribed number of points, the function in between is replaced by an
average value between the straight lines joining the maxima and those joining the minima, with a tapered
beginning and end, The process is repeated until there are no changes in a complete pass. Two different

. tlhresholds can be prescribed for two sectors of the function. The nuitber of passes through the procedure is
* ~printed in the ountpit a number of four to six passes is usual. Th1 computation of the average ordinate is

performned by the subroutine AVRG called by SMUZ. The parameters in CALL SMUZ are:

I ) Real array: ordinates of the function being smoothed
(2) Integer: number of points In the array
(3) Integer: thrc,'old number of pouitv for the first part olf the curve
(4) Integer: threshold nymber ot points for the second part of the curve
(5) Real: fraction of points in the first part of the curve.

The thresholds have to be chosen so that the inwwailmted noise is elimlinatled while the significant
extrema remain; a number to start with might be I/ 10)" ofthe total nnumibr oh points.

17



It has been found that the use of this subroutine on the real and imaginary parts of the Fourier trans-
form that subsequently has to be inverted tends to introduce spurious oscillations for late times.

9. DIGITIZATION AND TRANSFORM ERRORS

Digitization is routinely performed at HDL, with a Science Accessories Corp. GP2 digitizer, which

allows for rear enlarged projection of oscillograms. The tablet is 20 by 20 in. and has a-definition of
ticular event consist of four or more traces at differing sweep speeds. Further processing of the data (e.g.,

time tying, sequence checking) is performed on a CDC 6600 computer with a complete and innovative
software package developed by T.V. Noon of HDL (unpublished).

To evaluate the effects caused by the digitization and transform process, numerous experiments were
performed using Mimipulse (sect. 7). Plots of Mimipulse were constructed by the same instructions to the
operator as would be used for oscillograms processing (e.g., marking just the endpoints of apparent straight
lines).

Several different results are presented (all compared to the analytic transform of Mimipulse):

a. Transforms of equispaced Mimipulse-to assess transform errors (fig. 1-8).

b. Transforms applied to the digitized points-to determine the combined errors due to digiti-
zation and transform (fig. 9, 10).

d d c. Transforms applied to the array whose values are the actual values of Mimipulse at the

digitized time points-to simulate sampling errors (fig. 11).

d. Transforms applied to the array whose values are the truncation of the analytic values at
the digitized time points-to simulate quantification errois (fig. 12).

e. Transforms applied to the array whose values are the truncation of the analytic values plus

a random number (between -10 and 10) of points on the digitization tablet-to simulate the effects of
the digitization-transform process (fig. 13, 14).

One major conclusion that can be drawn from this set of experiments: At least for oscillograms of
traces sinmlar to Mimipulse, errors introducLed by the digitization-transformation process are mi•nor in the
frequtlncy range of interest (up 1000 Mtz) compared to the inherent errors of the typical data.taking
apparatus (where 5 percent errors are considered rcdsonable),

Also plots are includ '. where inverse transforms applied to the (analytic) frequency spectra of givean
functions, two functions are compared to the otigial function.5 used:

a. Mimipulse (fig. 15-20\

b. Double exponential, iLe., ou - e.' (flg. 21.23).

One might conclude from these results that |PLIT performs '4uite credibly. llowev•r. the whole area
nof hiverse Fourier trausfrans is fraught with dwger. In th• evtet that the tuinc fiequency ititeival or both

18



do not cover the (significant) domain of the function, results from (1) the FFT, (2) the FFT with the value
at 0 subtracted, or (3) FLIT can be unreliable. Cases can easily be constructed by truncating the time or fre-
quency range of an analytic function-where either (1), (2), or (3) will give the best results. Since all three
converge (pointwise) to the correct value as the frequency range and N go to infinity, one may increase the
number of points in the array, provided the data and computation facilities support this increase. Lack of
convergence is often indicated by failure of FLIT to return to 0 or of the FFT beginning significantly far
from 0. Convergence is often indicated when the FFT and FLIT agree. When the data support it, INUFT,
with its ability to accept nonequispaced frequency records, may be the transform chosen.

ii0

to-%

t'0

0, o- 0 20o 30 40 ,o 0 ?o0 so go too

FREQUENCY 11tOo)

Figure 1, Absolute values of aialytic traustorm of Mimipulse (solid Hlin) and
FLATW of quispaced Ntimipulso for 256 wiiunts (dotted line).
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Figure 2. Absolute values of analytic transform of Mimipulse (solid line) and FFT
of equispaced Mimidptqse for 256 points (dotted line).
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"Figure 4. Absolute values of analytic transform of Mirnipulse (solid line) and
FFT of equispaced Minapulse for 512 points (dotted line).

k7
10'

0 " t0 m 30 4n %n V) m 10S• o . , o L _ . . . .. [ .. . . .. .I . 1 01.. •
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Figure 6. Absolute values of analytic transform of Mifnipulse (solid line) and FFT
(first 90 MHz) of equispaced Mitnipulse fur 10.24 points (dotted line).
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Figure B. Absolute values of analytic transf'ormi of Mimipulse (solid line) and FFT
of equispaced Mirnipulse for 2U48 points (dotted line).
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Figure 10. Analytic transform of' Miinipulse (dotte~d line) and FLAT "~digitin~d Munii-
pulw~ 2048 poinat interpolated array (~solid line).
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Figure 12. FLAT of analytic values of Mimipulse evaluated at digitized time points, quantified to
multiples of 1/1000 of maximum value and linearly interpolated to 2048 po~its,
simulating sampling and quantification errors (solid line) and analytic transform of
Mimipulse (dotted line).
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Figure 13. FLAT of analytic values of Min~i Pulse evaluated at digitized time points quantified to
-~ multiples ofl/I1000 of maximum value and R multiples of 1/1000 of maximum value,

where R ii random numbker between -10 and 10, simulating effeuts of digitization (solid
line) and analytic tmansforni ot' Mimipulse (dotted line).
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Figure 14. First 90 MHz of graph in figure 13.
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Figure 15. Mimipulse (solid line) and FLIT of analytic transform of Mimipulse for
256 points (crossed line).
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Figure 18. Minilpulse (solid line) and FLIT of analytic transform of Mimipulse
for 1024 points (crossed line).
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Figure 19, Mimipulse (solid line) and double aliased FFT of analytic transform of
Mimipulse for 1024 points (crossed line),
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Figure 20. Mimipulse (solid line) and single aliased FFT of analytic transform of
Mimipulse for 1024 points (crossed line).
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Figure 21. FLIT of analytic transform of k (eat -Ot)for 256 points (solid line) and

k (eat -ejt (crossed line).
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Figure 22. Graph ofk e -e )(solid line) and double aliased FFT of analytic transform

of k (eat -et) for 256 points with value at 0 substracted (crossed line).
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Figure 23. Graph of k ( -C O (solid line) and single allused FFT of analytic transform

( 0 k with value at 0 subtracted (crossed line).
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10. SUBROUTINES RDTAPE AND CSTOUT

Subroutines RDTAPE and CSTOUT were written by T.V. Noon of HDL, and they are used to read
the digitized data for storage and prepare them for input for further analysis. Subroutine RDTAPE reads
(possibly) multiple data sets consisting of binary information, fills up the appropriate arrays, and checks
for the end of the collection of data and for irregularities in the data format.

Subroutine RDTAPE may be used in two modes, only one of which is of interest here. It is called
by

Call RDTAPE(NT, X,YN,LABEL)

NT = number of file containing data (integer)
X - name of array to receive independent variable,
Y - name of array to receive dependent variable,
N = name of (integer) variable to receive number of points,
LABEL = name of array to receive label (eight words),

Subroutine CSTOUT checks the output of RDTAPE for monotonicity. If

X(I+ 1)=X(+2)= ... X(I +n),

'.1 then

X(I + 2),.... X(I + n), Y(I + 2),.... , Y(i + it)

are removed from the respective arrays, the arrays are reordered, and Y(I + 1) is replaced by

•+":i 7i- Y( I + 0/]1. +

X(l +2) < X( + ,

then

X(l + 2). Y(I + 2)

are removed from the respective arrays, and tei arrays ate reordered. The routine is callcd by

[ Call CSTOUT(X,Y,N)

V where

F X = name of independent array,
Y w iianme of depeadent array,
N = number of points-possibly a new value will be returned.
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APPENDIX A.-UISTINGS OF PROGRAMS USED IN NUMERICAL FOURIER TRANSFORMS

SUBROUTINE FLAT(YNYQA,NSTAR,DT,JFLAG3 '
CONPWLEX X,YNYQAINSTARJYV1.YVZXMoTCIA

C FLAT CALCULATES THE TRANSFORM TO FREQUENCY SPACE OF THE COMPLEX ARRAY
s4C GIVEN IN YNYQA. NSTAR IS THE NUMBER Of POINTS IN THE ARRAY.. DT IS

C DELTA TIME FOR THE ARRAY. JFLAG SHOULD BE SET TO -1 IF THE TRANSFORM
C IS TO BE EXPRESSED IN TERMS OF EXP(-?*PI*F),.e1 OTHERWISE. THE TRANSFORM
C IS DONE IN PLACE.

YV1:O.0 $ NPT=NSTAR-1 S SNYQO0.0
TPI=8.*ATANC1.) S TPI2I=(-1./(TPIeTPII)

B TMAX=NPT*DT
~j.N1=N5TAR/2+1 $ N2=N1-2

DF=1 .I(NSTAR*DT)
TC I=JFLAGODF*CMPLX(0.,TPI)
T=DTONP7
A=YNYQA (NSTAR I
DO 10 1-2#NPT
SNYQ=SNYQ+REAL (YNYQA( II)

10 CONTINUE
SNYQ-SNYQ*.SOREAL(YNYQA(NSTAR))

600 00 110 I*IvNPT
YV1=YNYQA(I3
YV~aYNYQA(I*1)

110 YNYQý,..I)=YV2-YVl
YP4YOA(NSTARhu-YY2

'I VV20.
500 DOc 115 IE1.*4STAR

YV1mYNYUA(I)
YAIYQA(IfuIYV?-VV1IIDT

115 YV2-VYV
VNYOA(li-YNYOA( I.YV1,OT

CALL FFT10(YNYQA,NSTAR,JFLAG)

D0 175 IAZON1

175 YNYciA(Ilo-YNYQA(l)/X
00 176 ImIsN2

176 YNYOAtNl#IIoCONJGIYNYQA(Nl-1I))
RETURN
END

SUBROUTINE FLIT fYNYQAvNSTARvOFvJFLAGl
COMPLEX YNYQAINSTARI*W,S

C FLIT CALCULATE THE TRANSFORM TO TINE SPACE OF THE COMPLE2 ARRAY GIVEN

E IN VNYQA. 4STAR IS THE NUMBER OF POINTS. OF IS THE FREQUENCY INCREMENT
C JFLAG SHOULU BE SET TO #I IF THE FREQUENCY ARRAY 15 EXPRESSED IN TERMS
C OF EXPt-?*PIOFI). -1 01HERVlSEt OUTPUT 15 A COPP&.Ei(AARAYVkVVQA
*C WHOSE REAL PART IS THE DESIRED TRANSFORM.

AuRIEAL(YNYQA(1) I

TPI'8.0ATANII.1
NloSTAR/2#1

FAC*-tTPI9'OI)'*2IWSTAR
00105 I-10N),

105 YNYQAII~wYNYQA(I'D'FAC*(I-IRS**
00 110 IwId2
YkYQAII4I.IIuCONJG(VNV0A(NI-II)

pIEIubg piagblya 33



APPENIX A

110 CONTINUE
CALL FFTlO(YNVQA,NSTAR,JFLAG)
XLxO.
DO 75 1UZNSTAR
XL=XLeREALtYNYGA(Z3))

75 CONTINUE

Ww0. 6 TwO.
5=z0.
DO 50 I-1,*STAR

YNYQA(IlxIW
50 ~WwS~ODT

7220.
T=DTOItJ5TAR-1 3

DO 325 la1.NSTAR
325 KXaXREAL(YNYQA(I)l

'd=NSTAR

4.35 YNYOA(I)uYNVQAII3.(j-1)ox2
RETJRN
END
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APP~ENDIX A

SUBROUTINE ANMI(XtYNl
DIMENSION XIN),YiNi
NAMELIST /PULSEI A,AAtTl,T?,T3,T4,TE,Sl,S2,S3,S4

READ PULSE
PRINT PUL52

W2mP !'S4/(TE-T3)
x1: .~/S1/(T2-TlI)
X2=1 ./$2/(TE-73)
X3=1.IS3ItTE-T3)

GG=-2.OAAfIT3-T2*3o*3YY/(T3-72)..2
DGz-AAl IT3-T2)*2-SG*tT2+2.*r31
Cl=A/Tl
C21-T2-TI
C?22P112./C21

DO 16 ImI,N

16 CJNTiMLJE

DO 18 ImNI94
18 FIKIII.GT.T?) GO TO 19
is CONTINUE

19 Nau1-1
D0 20 IxN2*N
Ml4I14II.6131 Go To 21

L20 CONTINUE

tIt4fl),GT*ICI GO TO 23
2a CONTINUE

GO TO Z4.

24 03 30 1.IO1.4
30 V4I1aCloeEi,

*r..i-2.*DG-3.*~GGT3)*T3

SO VI MIOT3(G(D.COlITIT

EC41P vAA*C4EXPfK3*T3)
CE4.*WZOT3

00 60 1u143,p
TIOKIlt

60 Vi 1bCC41@EKP6-K2.T1ll~tOSIWI*TI--CC441*LLAS*'EKPI-X3OTI)
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APPENDIX A

1 451N(W2*TI-CC48)
IF(N4.EQ.N) RETURN
DOI 70 IzN4*N

70 YII)zO.
RETURN
ENO

SUBROUTINE ANTRA(BM,FTONPTS)
COMPLEX FT(NPTSIFTI ,CWT1,CWT3,CWT4,CM2,CK43tEYE
COMPLEX CWT,CWT2,F-TI,FT2,FT3,FT4,CMI

DIMENSION O4(NPTS)51 ~NAMELISI /PULSE/ AAATI ,TaT3,T4,TE ,SI ,S2,3.54,PINIT
PI-4.*ATAN(I.I
EYE=CMPLX(0.,1.l
READ PJLSE
PRINT PULSE
W1=PJ/(74-T3)/2.
Wi2=P1054/(TE-T3)

Y--PIOA/2./(T2-11U.EXP (-XI*(T2-T1 Ib

C01mT3-T2
CI aA/TI
C~l1iT2-TI

C? 3AC 22 21

C?4.EKP(-xI*CM1

C0I'-TE-T3

00 1,00 I-I,wPTS

Wi0 T I mf c
w 120M*

iT3*W'T3

CIITwCMPLKfCOS4WTI .- SINfooTI))
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CWT2aC4PLXfCOS(WT2bq-SIN(WT2) )
CiWT3zC4PLX(CDSWT3)q-SIN(WT3D)
C4T4vC4PLX (COS(WT4) ,-S.N(WT4))
MCI4mCPLM(X,W)
C4i2zCiPLX(X2,Wi)
CI3mCMPLXfX3,W)
1IF(W.%E.O.O) GO TO 92
FTI -.5*AoT1
FT 1=FTI.(AG*BG.(T3.T2IS.5,DG@IT3S.-2*T3*T2*wT2*S02)/3..GGO
I (T3..3eT3.oo2T2,T3*17eoI.T2O.3)S.251b{OI
GO TO 14

92 FTi=CWIT OCMPLXII.,WT)-l
FT I mCI*FTI/WS
F T I mA AEYE/W-E VEOC 31/WQ-C 331UF
FT 2m Y/ wlS-E YE *C 32/WQ-C33/WF
FT IuFTI.CWT3*FT I-CWT2*FT2

94 FT1ZCMI*ICMI*C23
FT2mC2(oOC(dTI *C22*CM1
FT~mA*CWT /FTI
FT IuFTI*FTIOFT2
FTI*A&*CWT3
Mw2-C4t20C45.C46
FT=4*W4FTall*4
FT3%-C430C4?-C48
FT3%C4IO*CWT4.bFY3'MNkliC44'Ii2
FT4.C'q?*CH2*C40
FT24FT21FT4

FT3*FTI/FY4
100 F(~FIr~.p2F)

ENO
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SJBkJLJTINE 4iJFT IXYNo,'4UO,IOMFT,DXJFLAG)
C, THIS SUBROUTINE CALCULATES THE FOURIER TRANSFORM OF THE
C FUNCTION GIVEN BY STRAIGHT LINES JOININIG THE POINTS GIVEN bY THE
C ARRAYS X,Y. THE NUMBER OF INPUT POINTS IS N, THE FREUUENCY ARRAY OK4 IS
C PROVIDED A'D HAS DIMENSION NU. DX IS A REAL ARRAY Of DIMENSION N
C THAT IS USED FOR SCRATCH. THE FOURIER TRANSFCR IS GIVEN IN THE
C COMPLEX ARRAY FT.
C IF 10.4=1, INPUT AND OUTPUT OM ARE CIRCULAR FREQUENCIES
C IF IOM=2,INPUT ARRAY IS CIRCULAR FREQUENCY, OUTPUT IS FREQUENCY
C IF V .4=3, INPUT ARRAY IS FREQUENCY, OUTPUT IS CIRCULAR qrcREUfENcY
C IF IOM''., INPUT AND OUTPUT OH ARE FREQUENCIES
C JFLAGz.1 IF THE FOURIER TRANSF60~ HAS A FACTOR EXPI*IWT)
C JFLAG=-l IF-THE FOURIER TRANSFORM HAS A FACTOR EXP(-iWT)

DIMENSIaN XINhvYINI OXIN),OM(NU)
COMPLEX EYE,EXI,EXZS),S2,FT(NU)
T3P1ý8.6ATAN(1.)

S-0.
EYE' (3. ,I.
IF(IO'4.LE.2) GO TO ý5
03 2D Izl.NJ

as NPaN-I
DI 10 IalNP

CIO To 41ý

4z~ 01 to$ I-A.NP

h.N I 31404

OF '*41( fjol

03 So j'.ý.N
IF 1FLAC..E4J.1J G3 TO 461

oY*YfJl-YQ i-I
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4't WT=WSxIJ)

EK2=:C4iPLX(C3S(WT),SIN(WT))
j $~2=S2÷{ EX2-EXll "OXfJ-1I)

EXI=EX2
so C3NT INUE

IF(IFLAG.EQ.1} GO TO 4•8

E)(I=CMPLX(|CJS (W7 I SI NIWT }l,

48 SI=SI-Y(IN)eEXI
70 FT(I):(EVE$SI+S2/W)/W

IFI!O0.EQ.I.3R.IO.4.EQ.3) GO TO 85
80 DO 80 o i=,NU
80 014 (1) -14 .(1 OT I PI N

85 IFIJFLAG.EQ.1I RETURN
0 D2 93 I=INJ•? 90 FT {I)=CONJG(FT4111

RE TJR•N
END

SJBRIUTINE INUFTIXYNNU,04,10 It4,•rT,CSCR,JFLAGI
C YHIS SUBROUTINE CALCULATES THE INVERSE FOURIER TRANSFOIRM OF THE FUNCTION
C GIVEN BY STRAIGHT LINES JOINING THE POINTS GIVEN BY THE COMPLEX ARRAY FT
C AS A FUNCTION OF THE REAL ARRAY 0. THE NUMBER OF INPUT POINTS IS NU.
C THE INVERSE F.T. IS ASSU4ED TO BE A REAL FUNCIIONI AND @sOES IN THE
C ARRAY V, AND THE REAL ARRAY X IS GIVEN AND HAS D1HENSIIIN N.
CSCR IS A C04PLEX ARRAY OF DIMENSION NU AND IS USED FOR SCRATCH
C IF IODA*, INPUT AND OUTPUT ON ARE CIRCULAR FREQUENCIES
C IF IOM2,INPUT ARRAY IS CIRCULAR FREQUENCVY OUTPUT IS FREQUENCY
t IF 10•N•3 INPUT ARRAY IS FREQUENCY* OUTPUT IS CIRCULAR FREQUENCY
C IF 0Ml4•. INPUT AND OUTPUT ON ARE FREQUENCIES

. C JFLAG**1 IF THE INVERSE FOURIER TRANSFORM HAS A FACTOR EXPt$tUTI
C JFLAGw-I IF THE INVERSE FOURIER TRANSFURM HAS A FACTOR ENP-IWT)

DIMENSION XINI.VINI vH'MNUl
COMPLEX EYE*,EXI .EX~,v $ ,FI 95o bp;ýk(5R4NUISOYMRk 9KI14

tPIN* 1./TUPI
•:i PiNu.0.TPiN

IF(JFLAGEU.I) GO TO I$}..i ~03 10 l1~k

tO FT4IIwCONJGIFT4II1

!23 1. 41 *3(!!T P ..gi te Oi

25 NP*NU-|

::': 40=0SIF|~Ot .WI-I,NP.. O O6

•,']i AD S, S.IFT IIt I .FTItI1t eOM4 i÷| I-ONI I)I

,V1 I I -IF AL I 5S1 0P IN
:•i 42 D3 45S I-|vNP
•".5 CSCR E I I-IF TI |I h-F141 1 I/104INIi i-ON I I I

03 70 I-NOq%
U'XI I }
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* ~S2=(0.010.0)
IFLAG=O
WT=W*04(U)
EX1=CMPLX(CGS(WT),SIN(WTUl
Sl=FTC1)*EX1
DO 50 J&2,NU
IF (IFLAG.EQ.I) GO .3 47

X?=ON(J-)
X1FO(JiW*2.T5C) GO TO 46

XP=Xi+X2

XR=XQ*KV'+X2**3
DY=FT(J)-FT(J-1)
XR1=!0.5*WS*XPWF*XR/24,)*bY

S2=52+X~RE+XIM
GO TO 50

46 EK1=C'iPLX(COS(W*Xl) ,SIN(W*Xl))
IFLAG=1

47 WT=W*O4(J)I
EX2=CMPLX(CQS(WT~ SINivWT))
S2=S2+(EX2-EXI)*CSCR(J-I)
EK1ZEX2

50 CONTINUE

IF(IFLAG.EQ.1) GO TO 48

EXI=C'4PLX(COS(WT) ,SIN(WT) I
Y( I) REAL(S)*PIN

*70 C3NTINJE
IF(IOR.EQ.1.OR.IOMEQ*3) GO TO 85
DO 80 I=1,NJ i

* 80 OA(I)=O?4(I)*TPIN
85 IF(.)FLAG.EQ.1) RETURN

DO 90 1=1#NU
90 FT(I)=CONJG(FT(I))

RE TURN
END
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SUBROUTINE CLINT(XF,YFJF,NSTAR,XNYQ,YNYQ)
DIMENSION XF(J':J,YF(JF)
COMPLEX YNYQ(NSTAR)

YNYQ(1I=YF (11
03 20 L=2,NSTAR
X=X1+(L-l 3*XNYO

10 IF(X.LE.XF(I)) GO TO 20

IF(I.GT.JF) GO TO 30

Cl=(YF(I)-YFII--13)/DENLM
* ~~C2-(YF(I-1 )*XF( I)-YF(I )*XF(I-i ) ), ENnM'

GO TO 10
20 YNY0CL)wC1*K'+C2

GET TO 100
30 DO 40 J=L,NSTAR
40 YNYQ(J)=O.
100 RETURN

END
SLJBROIF. INF Lli9T(XF,Yf,JFoNSTARXNYQ,YNYQ)

v ~DIMENSION XF(JFbtYF(JF)
DIMENSION YNYQCNSTAR)

Xl=XF(1)
YNYQ(1 )zYF(lJ
DO 2D L'xtNSTAR
X=XI+(L-1J*XNYQ

10 iF(X.LE.XF(IIH GO TO 20

I F (I .GT.*Jf) 6GO TO 30

C2=(YFdt-Y~1-1* $/F(tENEH*F(-))DE

GO TO 10
20 YNYQ(L)=Cl*X*C2

GO TO 10D
30 DO 40 JzLPXSTAR

t 40 YNYQ4JtG. .

100 RETURN
END0
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SJB~tJJTINE RDTAPE(NT#X,Y,NtLABEL)
DIMENSION X(lhYV(1),LABEL(8)
READ ('T) (LABELlI)vI=1,8)
IHfEOF(NT) 140,10

10 READL(4T)N
IF(EUF(NT) 150,20

20 READfINTl(X (I),Y(I) ,I=I,N)
IF (E9F(NT) 150,30

30 RETJR'4
40 PRINT 41
41 F.)R4AT(5X,*E0F ENCOJNTERED PROPERLY*)

GO To b0
50 PR14T 51,L&BEL
51 FORMAT(5X,*;-0F ENCOAJNTtRED IMPROPERLY DURING *#8A10#* EXIT CALLED*

60 CALL EXIT
E'lD

SJBRJJTINE rSTOUT(XFtYF*JF)

*C C
C CH~ECK TIMiE ORDERING OF 1IHE P01INTS AND CAST OUT THG&E POINTS NOT IN THE C
C PRIIPER TIME uRDER c
C IT ALSO AVERAGES THOSE POINTS WHICH HAVE THE SAME X VhLUES C
c C
CCCCCCCCCCCCzCCcýCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEEcccccccCcc

DIMENSION X1F(JF)*YFCJFI
JaAD-0
Jji

LSU'4=1
* K=2

XSAV=XF(l)
YSUM=Yl-(1)

80 IF(XF(K)-XSAV)90t.100,I10
90 K=K+1

JBAD=JBAO + I
I F ( K-J F )8 0 8 D,110

100 LSU4=LS~JM+l
YS UMYS UN+YF (K
K=K+l
IF(K-JF)80,80,30

110 YF(J)=VSUM/LSUM
XFW( IX.-AV
IF ('-J F )120,130,30

120 XSAV=XFCK)
YSU4,YF (KI
LSUM.=l
KzK+ i
JZJ+I
G2 TO 80

130 jxj+.I
YF (J)=YF4K)
XF CJ IXF(K)

30 PRINT 1,JBAD,JF
I FORI4AT(/#1xt15,# POINTS OUT OF A TOTAL OF otIst

1 0 DID NOT SATISFY THE TIME ORDER CRITERION*)
JF=J
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JB AD =0

201 IF(XF(I).GE.O.0) GO TO 202

JBAD=JBAD*1
IF(I-JF) 201,205,205

202 IF(I.E2.1) GO TO 206

JF=JF-IV ~DO 203 Kal 9JF
XF (K )XF(K*I)

203 YFfKJ=YF(K.+I)

PRINT 210,1
G3 TO 209

tý2 05 JFZ1
PRINT 211
GO TO 209

20b PRINT 212
M0 PRINT 213,Jf

RETURN
210 FORRA~i~r(1Xl~t POINTS HAD Mf-GATIVE TI1*ES*Y
211 FORiIAT(1X,* ALL POINTS HAD NEGATIVE TIMES*)
Z12 FORMATtIX,o NO POINTS HAD NEzGATIVE TIME!5*)
213 F3RNAr(lX,110,* POINTS WILL-BE USED*l

END
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SUBRGiJEINEE FFTCA,NP3W,NSTAR,XNNYQ,ISIGN)
C OMLXINPUT AND OUTPUT ARRAY.CMLX4

C NPOW = ANYTHING. IT IS NOT USED AND IT 1S KEPT TO1 MAKE THE CALL
C COMPATIBLE WITH A PREVIOUS VERSION OF FFT.
C NSTAR =NJ4IBER 3F POINTS IN ARRAY.
C XNYQ =INCREMENT IN THE INDEPENDENT VARIABLE.
C ISIGN SIGN IN THE EXPONENTIAL OF THE FOURIER TRANSFORM.A

DOL10Tt-1,NSTAR.IIN

10 CONTINUE
RETURN $ END

IDENT FFT1D
ENTRY FFTlO
EXT SIN.,COS.
VFD 30/51IFFTID,30/3

FFT1D BSS 1
5X7 AD
SA7 SAVEAO
SA2 AIle-
SA3 A1+2y
Sal X I
SB? (2
S83 X3
SA2 B2
LX2 I N2N

SA6 N
SB6 X6
584 I
SA3 B3
S87 84
6X7 X 3
SA7 ISIGN
Sal 81-1
5X6 Bi '
SB3 B7
SAO B7+87

D05 GE 83,84tsz
SAl 81.84

SA3 91+B3

5A4 A3+B7
BX6 Xl
LX7 X2
SA6 'A3
SA? A4
8bX X3
LX7 X4
SA6 Al
SA7 A2

S2 SX? 86
AK? 1
58? K2
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S3 LE 84,B2,554
SX2 52
SB5 A 0
AX2 1
SBe. B4-82
SB2 K?2
G E a2,85503

S5 SB3 B34-AO
SB'4 B4*B2
LT 830B6005
SK6 6.0

S6 SB? X6I
SA2 4
SB6 X2
GE 879B69SIO
SA1 TWOPI
$6.2 [ISIGN
PX2 BO,X2
PX6 BOX6

DX3 X6*X2
UX3 XK3
PX4 BOX3
RK6 X4/X

56.6 THETA
SAl THETA
RJ SIN.
FXI K6X60

NX7 xi

FX6 XO-X6

SA? WID

SAl THETA
RJ COS.
SA6 WRO

1X2 XZ-X2
SA3 MMAX
SBS X 3
LX3 I
586 X3

SA3 N

Dog S52 91+BS
SBS 40
SA3 02.83
SA,. 43#67

RKD X5-xb
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INX7 KO0
RX6 Xl*X4
5A3 51+83

SAt+ 43+B7
.RX5 X54X6

'NXO x 5
RX5 X3-X7
NXb X5
RX5 X34-KJ
SA6 82+83
NX7 X 5
RX5 X4-XO
SA7 51+B3
583 83386
b4Xb X5

tRKO X44XO
SA6 A6+67
NX7 XO
SA7 A47+6
L T 63tB'.,DOb
SA3 ORO
SA'. W10
SA5 PJST

LKb X 2
RX? X50X?

RXO X50X1

S83 £0.81
RX3 X3-X2
NXI X 3
SAO 33

kSA6 43

NX2 X 5
SA? A'.
LT 53,85,0J9

Skb 44AX

SID SA I SAYEA()
SAO X I
FU IFFTID

N ass. I

ISIGN as
W4AX ass I *
TidOP I DATA e,.26318c,30717958
TlETA ass5 I
WST 1355 I
MID ass I
WRf1 8ss I
ONE. DATA 1.0
SAYEAO 855 I

ENDO

46



-- .---- ~- --- f ~ m

APPENDIX A

SUBROUTINE SMUZIX,NM1,M2,FRAC)
C THIS -SUBROUTINE AVERAGES OUT A FUNCTION BETWEEN PEAKS.
C X IS AN ARRAY OF N EQUISPACED ORDINATES.
C MI OR M2 ARE INTEGER3 THAT GIVE A MAXIUU NUMBER OF POINTS
C BETWEEN TWO MAXIMA OR TWO MINIMA FOR THE AVERAGING ACTION TO TAKE PLACE.
C FAAC IS THE FRACTION OF THE POINTS FOR WHICH Ml IS USED,
C THE kEMAINDER USES M2.
C THE PROCEDURE IS REPEATED UNTIL NO CHANGES ARE INTRODUCED ANVW#4EREY
C THE PRINTOUT STATES THE NUMBER OF PASSES OF SMUZ THAT WERE REQUIRED.

DIMENSION X(N)
NT=O

10 KFLAGwO
NT=4T+I

IFLAG=O
NI=3 S ;2=NeFRAC S M=ml
IFfFRAC.NE.O.| GO TO 15
N2=N $ MIM2

15 XII=XI1IEl =X 2)

IF(]I.GT.XlIH GO TO 20-j
LX=-l
X2MAXm~ll
KZMAXwI
KZHI N=-.M " •

GO TO 30
20 LXwl

KZMI N.E | .. ..I K2MINml
KIAXx--H

S30 XII-Xl
46.D 00 1000 IwN1,fNZ

IFIXIGT.XiI| GO TO 60

IFILX.EQ.-1) 60 TO 900LRw-l

IFI|-KZMAX.LEMI GO TO 100
KZMAKo.(I I •
XMAXUI.-1

GO TO 990
IF(LX-E.•PIN GO0 O 9 00......

K2NINai-I I

GD TO 990
100 KjiILAK2"A ... .. ..

KlINAX=X2MAX

XPNAXuX II
-S •:+ ~ ~~ItIIFtAG.@0.I| GO T0 I'O ... . . .. ........ .

"KFLA (A 1 I

;: :' ~KIN! N=X2MIN-W '

SINiI.IK ININ)
tflosMAK.E0.5t fo0 to Is* -----

catL.~ Avtl.( XISN I K3Ini lN1 U.n IINo11,11NhUKUl~llUS.XLi&M l
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I K1MIN.1,K1MAXI
150 CALL AVRG(XIMAXK1MAXX2NAXK2MAX ,X1NINK1NINX2aMINK2WINl~X,-

1 K1)4AX.1,K241NI
GO TO 990

Z00 KlMINaK.2MIN
Xl1NwNX2I4IN
K2MIN=I-l
K2MINmK11
IF(IFLAG.Eg.11 GO TO 250

IFLAG~1
KIMAX=(a2iAX-M

XIMAX=XKIKMAX)
IFtKI41N.EQ.1) GO TO 250
CALL AVRGiXIMAX,K1NAXX2NAKK2NAX.X1MAX.K1I4AXX1lNk~llN1NipX,

250 CALL AVRG I XI AXK1ANX X2NAX 9K214AX 911MIN A IN IN,X2M1N oKiNIN 9X 9
I (ItIN41,IK24AXI
Gil To 990

900 IF(IFLAG.Eg.01 GO TO 990
IFILX.EQ.lI GO TO 950
IFII-K2MIN.LTaMI GO TO 990
CALL AVRGIXlMAXK1MAXK2NAXK2NAXX2NIfiK2MRlNKiI ,K
I K2M1N.1,K2MAX)
CALL AVRGfX2MNqNK2MIN*XI9Iv 2A,2A.11XKMK1II
GO1 TO 980

950 IFII-K2MAX.LT.M) GO TO 990
CALL AVRGtX2NA~oK2NAXtI *I oXlMKNoKlHIN*X2MlN.KM1N*Xo
I K2ItAK*IvK2MINI
CALL AVRG(X2MA.AXK1,I,~olX2MINK2MN1I4.t1,1,XK2MIN.II-LI

950 IFLkG*O
990 XIluKI
1000 CONTINUE

IFt42.E~.N) GO TO 1010
NI~N'1 IN2-N IMI

GO TO 40
1010 IF(IFLAG.EQ,01 GO TO 1060

IFILX.EQ.11 GO TO 1050
CALL VGMMKKWKKNM2MKNNNKWI5Mk2#.,
I K1MIN*IoNI
Go TO 1060

1050 CALL AVRGIX1NAEKlWAXK2AXK2NAX.XiMIN.K1MNkX2NINoK2NS,9X
I KItIAK*~ ' NI

1060 IF(IKFL~kG.EQ.ll GO TO 10
PRINT I* NlN2v FRACwNT

I aiRNAIIIX, '4lW,I30" "20"01300 RAUP5
I . NUMERa Of PASSES OF MNil Isovill
RETURN
ENO

SUBROUTINE AmI1K~2~,~e3K.4X~~F
C THIlS SUBROUTINE SUB3STITUTES POINTS IN THE ARRAY X BETWEEN KI AND KF
C BY THE AVERAGE BETWEEN THE TWO STRA16HT LINES 90140 11 KIV U1,
C AND X39Y4 AT.POINTS Kle K2, K39 K4 RESPECTIVELV

DIMENSION X411
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A2=X2*A1
A1=X1@A1
Ble.51gKe.-K3)
82 mK'.0 B
Bl=X3*91
Cl -A2-A1.B2-Bl
C2=Al*12-A2*K1.BleK4-B2*K3

DO 10 JmKIKF
X(J)=tl*JC2

RETLiRN
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